

FACULTY OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS

GEE336 Electronic Circuity II Lecture #1 **Course Introduction and Amplifier Feedback Concepts Instructor: Dr. Ahmad El-Banna**

Course Objectives

- By the end of this course, students should be able to:
 - Analyze a Feed-Back Amplifier
 - Design a Function Generator
 - Design Active Filters
 - Design ADC and DAC
 - Design a Regulated Power Supply
 - Implement Simple Projects Using Op-Amps, IC555, ...etc

Course Information

Instructor:	Dr. Ahmad El-Banna <u>http://bu.edu.eg/staff/ahmad.elbanna</u> Office: Room # Email: <u>ahmad.elbanna@feng.bu.edu.eg</u>
Lectures:	Sunday ~ Wednesday 11:00 -12:40 Prerequisite: GEE 331
Office Hours:	Sunday ~ Wednesday 12:50 -13:40
Т.А.:	Eng.
Texts/Notes:	 Lectures slides, available by each lecture, and found online at <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12884</u> T. Floyd, Electronic devices - Conventional Current Version, 9th edition, Prentice Hall. R. Boylestad, Electronic Devices and Circuit Theory, 11th edition, Prentice Hall.

)anna Ahmac \bigcirc Summer 2015 Elec. Cts II, Lec#1

5

Course Information..

Additional References:	 Sedra & Smith, Microelectronic Circuits, 6th edition. Horowitz & Hill, The Art of Electronics, 2nd edition, Cambridge Press. EE113 Course Notes Electronic Circuits by Prof. G. Kovacs, Stanford University, Department of Electrical Engineering. 				
Assessment schedule:	Assessment 1 Assessment 2 Assessment 3 Assessment 4	Fifth-week examinationMid-term examinationProject discussionFinal-term examination	week week Week week	5 9 14 15	
Grading:	Fifth-week exa Mid-term exan Final-term exan Quizzes Oral examinati Practical exam Laboratory exa Semester work Design Project Total	mination nination mination on ination mination	5 30 40 5 - 10 - 10 - 100	% %	1

Lectures List

Week#1	 Introduction and Feedback Basics
Week#2:4	Op-AMP Linear Applications & Sawtooth Generators
Week#5:6	Sinusoidal Oscillators
Week#7:8	• Active Filters
Week#9	• Mid-Term Exam
Week#10:11	• 555 Timer & Multivibrators
Week#12:13	 VCO & Design of DAC and ADC
Week#14	Project Discussion & Final Review

FEEDBACK BASICS

Banna

Ahmad

 \bigcirc

Summer 2015

Elec. Cts II, Lec#1

Feedback Amplifier

• Block diagram of a typical feedback amplifier

- Types:
 - 1. Negative feedback.
 - 2. Positive feedback.

9

Feedback Amplifier

- **Depending on** the relative **polarity** of the signal being fed back into a circuit, one may have **negative** or **positive** feedback.
- Positive feedback drives a circuit into oscillation as in various types of oscillator circuits.
- Negative feedback results in decreased voltage gain, for which a number of circuit features are improved.
- Some **improvements** of negative feedback are :
 - 1. Higher input impedance.
 - 2. Better stabilized voltage gain.
 - 3. Improved frequency response.
 - 4. Lower output impedance.
 - 5. Reduced noise.
 - 6. More linear operation.

FEEDBACK CONNECTION TYPES

1. Voltage-series feedback

2. Voltage-shunt feedback

FEEDBACK CONNECTION TYPES..

3. Current-series feedback

4. Current-shunt feedback

FEEDBACK CONNECTION TYPES...

- Series feedback connections tend to increase the input resistance, whereas shunt feed-back connections tend to decrease the input resistance.
- Voltage feedback tends to decrease the output impedance, whereas current feedback tends to increase the output impedance.
 - We will apply it on Op-Amp circuits.

INTRO. TO OP-AMP

Banna Ahmad \bigcirc Summer 2015 Elec. Cts II, Lec#1

Basic Internal Arrangement of an Op-Amp.

Stage#1 \rightarrow Differential Amplifier

Single-Ended Input & Double-Ended (Differential) Input

Double-Ended Output

FIG. 10.4 Double-ended input with double-ended output.

FIG. 10.5 Single-ended input with double-ended output.

Common Mode Operation

- Ideally, the two inputs are equally amplified, and since they result in oppositepolarity signals at the output, these signals cancel, resulting in 0-V output.
- Practically, a small output signal will result.

Common-mode operation.

- Common-Mode Rejection
- Noise (any unwanted input signal) is generally common to both inputs, the differential connection tends to provide attenuation of this unwanted input while providing an amplified output of the difference signal applied to the inputs.
- This operating feature is referred to as common-mode rejection.

Differential Amplifier Circuit

FIG. 10.9 Basic differential amplifier circuit.

Single-Ended AC Voltage Gain \rightarrow

$$A_v = \frac{V_o}{V_i} = \frac{R_C}{2r_e}$$

 $A_d = \frac{V_o}{V_d} = \frac{R_C}{r_e} \quad \text{where } V_d = V_{i_1} - V_{i_2}.$

 $A_c = \frac{V_o}{V_i} = \frac{\beta R_C}{r_i + 2(\beta + 1)R_E}$

)anna

hmad

S

Summer 201

Lec#1

Cts II

Elec.

Common mode AC Voltage Gain \rightarrow

Double-Ended AC Voltage Gain \rightarrow

Use of Constant-Current Source

- A good differential amplifier has a very large difference gain A_d, which is much larger than the common-mode gain A_c.
- The common-mode rejection ability of the circuit can be considerably improved by making the common-mode gain as small as possible (ideally, 0)
- The larger R_E , the smaller is A_c .
- One popular method for increasing the ac value of R_E is using a constantcurrent source circuit.

FIG. 10.21 AC equivalent of the circuit of Fig. 10.20.

Ideal & Practical Op-Amp equivalent circuit

FIG. 10.30

AC equivalent of op-amp circuit: (a) practical; (b) ideal.

)anna omac LO Summer 201 .ec#1 Cts II Elec.

- For more details, refer to:
 - Chapter 10,14, R. Boylestad, Electronic Devices and Circuit Theory, 11th edition, Prentice Hall.
- The lecture is available online at:
 - <u>http://bu.edu.eg/staff/ahmad.elbanna-courses/12884</u>
- For inquires, send to:
 - <u>ahmad.elbanna@feng.bu.edu.eg</u>